Pei Evaluation Service® is an accredited ISO Standard 17065 Product Certifier, accredited by the IAS. This Product Evaluation Report represents a product that Pei ES has Evaluated. This product has a Product Evaluation Service Agreement & Follow-up Inspection Service Agreement. This Product Evaluation Report in no way implies warranty for this product or relieves Aerosmith Fastening Systems of their liabilities for this product. This PER is an official document if it is within one year of the initial or re-approval date.

Report Owner
Aerosmith Fastening Systems
5621 Dividend Road
Indianapolis, IN 46241

Product
TraxPin® Fasteners

Approved Manufacturing Locations
Pei ES has on file a list of each approved manufacturing locations and which product is approved to be manufactured at each location.

For Evaluation Report Questions
www.aerosmithfastening.com
Aerosmith Contact: Spencer Jessee
Phone: (800) 528-8183

General Details
The TraxPin® is manufactured by independent companies to meet Aerosmith design specifications. The approved plant locations have an approved Quality Control Manual to manufacture this product. Aerosmith Fastening Systems and any company manufacturing the product, which are intended to be evaluated by this PER, has a Follow-up Inspection Service Agreement in place with Progressive Engineering Inc. (Pei) to monitor their Quality Control Program and finished product on a quarterly basis.

Evaluation Details
The TraxPin® is a power driven steel pin used for fastening to concrete, masonry or hot-rolled steel. The smooth portion of the shank must penetrate the concrete at least 11/16" or 1/4" steel substrate at least 7/16". Fire Rated and Seismic assemblies are outside of the scope of this PER.

Product Description
The TraxPin® is manufactured from AISI C 1060/1062 Steel, heat treated to a Rockwell C hardness between 53 - 59 for the core and have a minimum tensile strength of 65-75,000 ksi. The pins are mechanically zinc plated to ASTM B633 Type 1 SC or ASTM B695 Type 1 Class B. The plating has a minimum thickness of 0.0002-inch thick.

The TraxPin® is manufactured with either a smooth shank or a stepped shank, a nominal finished head dia. of 0.248-inch, and a ballistic point. Smooth shank pins and the stepped shank lower shank diameters are a nominal 0.102-inch while the larger portion of the stepped shank is a nominal 0.120-inch diameter. The pins are identified by the Aerosmith logo head stamp as shown on page 3 of this PER.

Approved Pins

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Nominal Length</th>
<th>Actual Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT012FPP - Smooth Shank</td>
<td>1/2"</td>
<td>0.626"</td>
</tr>
<tr>
<td>GT034FPP - Smooth Shank</td>
<td>3/4"</td>
<td>0.820"</td>
</tr>
<tr>
<td>GT100FPP - Smooth Shank</td>
<td>1"</td>
<td>1.000"</td>
</tr>
<tr>
<td>GT112FPP - Smooth Shank</td>
<td>1-1/2"</td>
<td>1.570"</td>
</tr>
</tbody>
</table>

Code Compliance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete floors (on ground) must conform with Section R506</td>
<td>Concrete construction shall be in accordance with Chapter 19 and ACI 318</td>
<td>Concrete Construction per Sections 1.8.7 & 104.11 Alternative Materials</td>
</tr>
</tbody>
</table>

2010/2015 NBC of Canada
Meets or exceeds the requirements of Section 9.27.5.7 of the 2010 National Building Code - Fasteners for cladding other than that described in Sentence (1) shall penetrate through the nail-holding base or not less than 25mm into the framing.

Note: These standards are developed using processes that may differ from those used by Canadian standards development organizations; nevertheless; these standards have been reviewed by the relevant standing committees and found to be acceptable. The ASTM standards referenced herein are referenced in the 2010/2015 National Building Code of Canada.
Acceptance Criteria
ICC-ES AC70
- Meets or exceeds the requirements of ICC-ES AC70 "Acceptance Criteria for Fasteners Power Driven into Concrete, Steel and Masonry Elements", Section 3.3 and Section 3.6.

Note: Designers, Engineers, and installers shall install the fasteners at a spacing that meets the wind pressure / seismic requirements of the applicable code.

Tested to

General Product Usage and Limitations
1. The fasteners must be installed in accordance with this Evaluation Report and the published installation instructions.
2. Fastener installation requires the use of a gas actuated or pneumatic tool in accordance with Aerosmith Fastening Systems recommendations.
3. For fasteners installed into concrete, the fasteners must not be driven until the concrete has reached the designated strength.
4. For concrete applications the minimum spacing requirements are 3-inch from the slab edges or saw cut and spaced a minimum of 4-inch apart thereafter.
5. The use of fasteners is limited to installation in un-cracked concrete. Fasteners that are j-hooked / bent during installation, spalled concrete, over-driven pins and fasteners not perpendicular to the surface will result in reduced capacity. A second pin shall be installed next to all visibly misfired pins.
6. The minimum concrete compressive strength for fastener installation is noted in Table 1.
7. Minimum concrete thickness must be 3-1/2-inch.
8. GT012PFP stepped shank TraxPin® fasteners are only approved for use in 1/4-inch ASTM A36 hot-rolled steel. Testing has shown that increasing the steel thickness above 1/4-inch may actually decrease the tabulated fastener capacities shown in Table 2.

Table 1 - Allowable Tension and Shear for TraxPin® Fasteners Installed in Normal Weight Concrete

<table>
<thead>
<tr>
<th>Fastener Description</th>
<th>Min. Diameter (inch)</th>
<th>Min. Embedment Depth (inch)</th>
<th>Min. Edge Distance (inch)</th>
<th>Allowable Capacity1,2,3 (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT034FP</td>
<td>0.101</td>
<td>11/16</td>
<td>3.0</td>
<td>52 Shear 77 Tension 50 Shear 89</td>
</tr>
</tbody>
</table>

1. If the COV exceeds 15% and the total number of tests is less than 30, then the lowest value is chosen from the first ten (10) acceptable values from set of tests conducted. Data that was suspect to installation were excluded from the set of ten as instructed by Section 8.2 of ASTM E1190 and Section 3.2.4 of AC70
2. The safety factor is based on Equation 3-4 defined in Section 3.2.4 of ICC-ES AC70 or reflects the EXCEPTION allowing the use of the lowest ultimate load in a set of 10 and a safety factor of 5.0. (Minimum of 5.0 per AC70)
3. The allowable capacity is based on Equation 3-3 defined in Section 3.2.4 of ICC-ES AC70. This includes a reduction factor for concrete overstrength and the calculated safety factor.

Table 2 - Allowable Tension and Shear for TraxPin® Fasteners Installed in Hot-Rolled Steel

<table>
<thead>
<tr>
<th>Fastener Description</th>
<th>Min. Diameter (inch)</th>
<th>Min. Fastener Penetration Depth (inch)</th>
<th>Min. Edge Distance (inch)</th>
<th>Allowable Capacity1,2,3,4 (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT012PFP</td>
<td>0.102 / .120</td>
<td>7/16</td>
<td>1.0</td>
<td>133 Shear 354</td>
</tr>
</tbody>
</table>

Notes:
1. If the COV exceeds 15% and the total number of tests is less than 30, then lowest value is chosen from the first ten (10) acceptable values from set of tests conducted. Data that was suspect to installation were excluded from the set of ten as instructed by Section 8.2 of ASTM E1190 and Section 3.2.4 of AC70
2. The safety factor is based on Equation 3-4 defined in Section 3.2.4 of ICC-ES AC70 or reflects the EXCEPTION allowing the use of the lowest ultimate load in a set of 10 and a safety factor of 5.0. (Minimum of 5.0 per AC70)
3. The safety factor and reduction factors were calculated using the equations found in ICC-ES AC70, Section 3.2.4 and 3.6.
4. The ASD Allowable load is calculated using ICC-ES AC-70 Section 3.8.4.1, Equation 3-6: Pa = Va = Fall = Fr * R * Rf / Ω
Table 3 - Allowable Tension and Shear for TraxPin® Fasteners Installed in Normal Weight Concrete Masonry Units

<table>
<thead>
<tr>
<th>Fastener Description</th>
<th>Min. Diameter (inch)</th>
<th>Min. Embedment Depth (inch)</th>
<th>Min. Edge Distance (inch)</th>
<th>Allowable Capacity(^{1,2,3,4}) (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT100FP</td>
<td>0.102</td>
<td>3/4"</td>
<td>3.0</td>
<td>Tension: 107 Shear: 170</td>
</tr>
</tbody>
</table>

1. If the COV exceeds 15% and the total number of tests is less than 30, the lowest value is chosen from the first ten (10) acceptable values from the set of tests conducted. Data that was suspect to installation were excluded from the set of ten as instructed by Section 8.2 of ASTM E1190 and Section 3.2.4 of AC70.

2. The safety factor is based on Equation 3-4 defined in Section 3.2.4 of ICC-ES AC70 or reflects the EXCEPTION allowing the use of the lowest ultimate load in a set of 10 and a safety factor of 5.0. (Minimum of 5.0 per AC70)

3. The allowable capacity is based on Equation 3-3 defined in Section 3.2.4 of ICC-ES AC70, but does NOT include the reduction factor for CMU overstrength. The force used is either the lowest of the first ten tests or the average ultimate load, whichever is indicated.

4. The values shown are based on nominal CMU with a compressive strength of 4,400 psi or greater. In accordance with ICC-ES AC70, a reduction factor shall be applied to these values when using a lesser compressive strength based on the following equation found in AC70, where \(f_{c_{mu}}\) is 1,900 psi and \(f_{c_{mu, test}}\) is the actual compressive strength.

\[
R = \frac{f_{c_{mu}}}{f_{c_{mu, test}}}
\]

![Fastener Head Stamp & Dimensions](image1)

Figure 1 - Fastener Head Stamp & Dimensions

![Aerosmith TraxPin Locations in 3-1/2-inch Deep Concrete](image2)

Figure 2 - Aerosmith TraxPin Locations in 3-1/2-inch Deep Concrete

![Aerosmith TraxPin Locations in 1/4-inch Thick ASTM A36 Steel Plate](image3)

Figure 3 - Aerosmith TraxPin Locations in 1/4-inch Thick ASTM A36 Steel Plate
Product Labeling
Each Box of fasteners shipped, that are covered by this PER, must have a label attached with at least the following information:
1. Aerosmith Fastening Systems Name, Address or Website
2. Fastener Designation & Fastener Part no.
3. This PER Number & Pei Evaluation Service® Evaluation Mark
4. Lot Number & Mfg. Plant Identification/Traceability
5. Trademark Head Stamp by Aerosmith as shown in Figure 1

Acceptable Evaluation Marks

Product Documentation
A Product Evaluation Service Agreement between Pei Evaluation Service® and Aerosmith Fastening Systems
An agreement between PER owner (Aerosmith) & each Approved Manufacturer
An Aerosmith Quality Control Manual - Dated: 4/1/2020
Pei test report No. 2018-6080 (A) - AC70 Fastener Tension & Shear Testing using a .102"/.120" x 1/2" Step Shank Pin, Part No. GT012PFP Embedded into 1/4" Steel - Dated 12/3/2018, Revised on 8/15/2019.
Pei test report No. 2018-6080 (B) - AC70 Fastener Tension & Shear Testing using a .102" x 1" Smooth Pin, Part No. GT100PFP @ 3/4" Embedment into Normal-Weight Concrete Masonry Units - Dated 1/3/2019
Pei test report No. 2018-6080 (C) - AC70 Fastener Tension & Shear Testing using a .102" x 3/4" Smooth Pin, Part No. GT034PFP @ 11/16" Embedment into 4,000 psi & 6000 psi Concrete - Dated 3/13/2019, Revised on 8/15/2019.