ABSTRACT
Clinical assessment of kidney function is central to the practice of medicine. GFR is widely accepted as the best index of kidney function in health and disease, and accurate values are required for optimal decision making. Estimated GFR based on serum creatinine is now widely reported by clinical laboratories, and in most circumstances, estimated GFR is sufficient for clinical decision making. GFR estimates may be inaccurate in the non–steady state and in people in whom non-GFR determinants differ greatly from those in whom the estimating equation was developed. If GFR estimates are likely inaccurate or if decisions based on inaccurate estimates may have adverse consequences, a measured GFR is an important confirmatory test. Endogenous creatinine clearance is the most common method used to measure GFR in clinical practice but may be difficult to obtain or fraught with error. We review methods for GFR measurement using urinary and plasma clearance of exogenous filtration markers and focus on urinary clearance of iothalamate and plasma clearance of iohexol compared with inulin clearance. We suggest plasma clearance of nonradioactive markers be more widely implemented in clinical settings. Further research is necessary on the impact of the use of measured GFR as a confirmatory test.

Published online ahead of print. Publication date available at www.jasn.org.

Correspondence: Dr. Lesley A. Stevens, 800 Washington Street, Box 391, Boston, MA 02111. Phone: 617-636-2569; Fax: 617-636-5740; E-mail: Lstevens1@tuftsmedicalcenter.org

Copyright © 2009 by the American Society of Nephrology

Clinical assessment of kidney function is central to the practice of medicine. GFR is widely accepted as the best index of kidney function in health and disease, and accurate values are required for optimal decision making. Estimated GFR based on serum creatinine is now widely reported by clinical laboratories, and in most circumstances, estimated GFR is sufficient for clinical decision making. GFR estimates may be inaccurate in the non–steady state and in people in whom non-GFR determinants differ greatly from those in whom the estimating equation was developed. If GFR estimates are likely inaccurate or if decisions based on inaccurate estimates may have adverse consequences, a measured GFR is an important confirmatory test. Endogenous creatinine clearance is the most common method used to measure GFR in clinical practice but may be difficult to obtain or fraught with error. We review methods for GFR measurement using urinary and plasma clearance of exogenous filtration markers and focus on urinary clearance of iothalamate and plasma clearance of iohexol compared with inulin clearance. We suggest plasma clearance of nonradioactive markers be more widely implemented in clinical settings. Further research is necessary on the impact of the use of measured GFR as a confirmatory test.

Published online ahead of print. Publication date available at www.jasn.org.

Correspondence: Dr. Lesley A. Stevens, 800 Washington Street, Box 391, Boston, MA 02111. Phone: 617-636-2569; Fax: 617-636-5740; E-mail: Lstevens1@tuftsmedicalcenter.org

Copyright © 2009 by the American Society of Nephrology
Table 1. Clinical conditions where assessment of GFR is important

<table>
<thead>
<tr>
<th>Clinical Decisions</th>
<th>Current Level of GFR</th>
<th>Change in Level of GFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td>Detection of CKD</td>
<td>Detection of AKI</td>
</tr>
<tr>
<td></td>
<td>Evaluation for kidney donation</td>
<td>Detection of CKD progression</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Risk of CKD complications</td>
<td>Risk for kidney failure</td>
</tr>
<tr>
<td></td>
<td>Risk for CVD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk for mortality</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>Dose and monitoring for medications cleared by the kidney</td>
<td>Treatment of AKI</td>
</tr>
<tr>
<td></td>
<td>Determine safety of diagnostic tests or procedures</td>
<td>Monitoring drug toxicity</td>
</tr>
<tr>
<td></td>
<td>Referral to nephrologists</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Referral for kidney transplantation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Placement of dialysis access</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Determinants of the serum level of endogenous filtration markers. The plasma level (P) of an endogenous filtration marker is determined by its generation (G) from cells and diet, extrarenal elimination (E) by gut and liver, and urinary excretion (UV) by the kidney. Urinary excretion is the sum of filtered load (GFR × P), tubular secretion (TS), and reabsorption (TR). In the steady state, urinary excretion equals generation and extrarenal elimination. By substitution and rearrangement, GFR can be expressed as the ratio of the non-GFR determinants (G, TS, TR, and E) to the plasma level.

those patients in whom a measured GFR should be considered.

NON-GFR DETERMINANTS OF SERUM LEVELS OF ENDOGENOUS FILTRATION MARKERS

Generation, renal excretion (filtration, secretion, and reabsorption), and extrarenal elimination determine serum levels of endogenous filtration markers (Figure 1). Estimating equations use easily measured clinical variables as surrogates for these unmeasured physiologic processes and provide more accurate estimates than the serum level alone.6 However, by design, equations capture only the average relationship of the surrogates to some of these physiologic processes, leading to error in some individuals.

Creatinine-based estimating equations include age, gender, race, or weight as surrogates for differences in creatinine generation from muscle mass (Table 2).2,7 People who are at the extremes of muscle mass and diet, who are malnourished or have a reduction in muscle mass from illness or amputation, who are of different races or ethnicities than included in studies used for development of the equations, or who have changes in the non-GFR determinants over time are most likely to have large differences between mGFR and eGFR.6,8–10

One of the challenges with the introduction of a novel filtration marker into clinical practice is that the non-GFR determinants may not be well understood, potentially limiting their interpretation in clinical practice. For example, it is now well recognized that there are many factors associated with the serum level of cystatin C other than GFR, but the mechanisms for these associations are not well understood.11

NON–STEADY STATE

Serum levels of endogenous filtration markers, and eGFR derived from these markers, are expected to be an accurate index of mGFR only in the steady state. Figure 2 shows the hypothetical change in levels of a filtration marker and estimated GFR based on that marker after an acute change in GFR.12 In the non–steady state, the rate and direction of change in the level of the filtration marker and in eGFR reflect the magnitude and direction of the change in GFR but do not accurately reflect the level of GFR. As shown in Figure 2, after a fall in GFR, the decline in eGFR is less than the decline in GFR, and eGFR thus exceeds GFR. Conversely, after a rise in GFR, the rise in eGFR is less than the rise in GFR, and eGFR is thus less than GFR. As the serum level approaches the new steady state, eGFR approaches GFR, and the level of the filtration marker varies inversely with GFR. The rate of rise in the marker reflects not only the severity of the reduction in GFR but also the non-GFR determinants.

CLINICAL SCENARIOS WHEN ACCURATE ASSESSMENTS MAY BE NECESSARY

In most circumstances, eGFR is sufficient for clinical decision making (Table 1). However, for patients in whom GFR estimates based on serum creatinine are likely to be inaccurate or in clinical circumstances in which decisions based on inaccurate estimates may have adverse consequences, mGFR may be helpful. Below, we describe clinical situations in general medicine and nephrology where measurement of GFR should be considered (Table 3).
Chronic Illness

All creatinine-based equations provide inaccurate estimates when used in people with abnormal levels of muscle mass. This is most relevant in chronically ill or hospitalized patients with reduced muscle mass. In these settings, eGFR is systematically higher than mGFR, and reliance on eGFR could lead to medical errors in this high-risk population, in particular, toxicity from excess medication doses and inappropriate use of imaging tests, as described below.

Drug Dose Adjustment

The kidneys excrete many drugs, and some medicinals have a narrow therapeutic window. eGFR is sufficient for adjustment of many medications, but mGFR should be considered before initiation of prolonged and potentially toxic therapy, such as cancer chemotherapy. Possibly, toxicities of some therapeutic agents could be reduced, and therapeutic efficacy improved, if more accurate GFR values were used to determine dose. This requires further study.

Imaging Tests

Contrast agents containing iodine and gadolinium have heightened toxicity at low GFR, requiring individual decision making regarding risks and benefits of imaging tests. Current recommendations are to avoid exposure to gadolinium and to consider preventive measures before iodine exposure in patients with reduced GFR. mGFR might allow improved decision making in patients in whom GFR estimates are unreliable.

Monitoring Impact or Toxicity of Treatments

Nephrotoxicity is a major concern in the use of drugs. However, drugs may also affect non-GFR determinants of serum creatinine by decreasing generation or inhibiting tubular secretion or extrarenal elimination. In addition, drugs may affect overall health status, leading to changes in creatinine generation from diet or muscle mass. In these circumstances, measured GFR is necessary to distinguish drug effects on serum creatinine caused by GFR versus non-GFR determinants.

Table 2. Non-GFR determinants of creatinine

<table>
<thead>
<tr>
<th>Factor</th>
<th>Effect on Serum Creatinine Independent of GFR</th>
<th>Accounted for in GFR Estimating Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direction</td>
<td>Mechanism</td>
</tr>
<tr>
<td>Age</td>
<td>Decrease</td>
<td>Generation</td>
</tr>
<tr>
<td>Female gender</td>
<td>Decrease</td>
<td>Generation</td>
</tr>
<tr>
<td>Race</td>
<td>Increase</td>
<td>Generation</td>
</tr>
<tr>
<td>African American</td>
<td>Decrease</td>
<td>Yes</td>
</tr>
<tr>
<td>Hispanics</td>
<td>Increase/Decrease</td>
<td>Yes</td>
</tr>
<tr>
<td>Asian</td>
<td>Increase</td>
<td>Generation</td>
</tr>
<tr>
<td>Body habitus</td>
<td>Increase</td>
<td>No</td>
</tr>
<tr>
<td>Muscular</td>
<td>Decrease</td>
<td>No</td>
</tr>
<tr>
<td>Amputation</td>
<td>No change</td>
<td>No</td>
</tr>
<tr>
<td>Chronic illness</td>
<td>Decrease</td>
<td>Generation</td>
</tr>
<tr>
<td>Malnutrition, inflammation,</td>
<td>Decrease</td>
<td>No</td>
</tr>
<tr>
<td>deconditioning</td>
<td>Decrease</td>
<td>No</td>
</tr>
<tr>
<td>Neuromuscular diseases</td>
<td>Decrease</td>
<td>No</td>
</tr>
<tr>
<td>Liver disease</td>
<td>Decrease</td>
<td>No</td>
</tr>
<tr>
<td>HIV</td>
<td>Decrease?</td>
<td>No</td>
</tr>
<tr>
<td>Diet</td>
<td>Decrease</td>
<td>Generation</td>
</tr>
<tr>
<td>Vegetarian diet</td>
<td>Decrease</td>
<td>No</td>
</tr>
<tr>
<td>Ingestion of cooked meat</td>
<td>Increase</td>
<td>No</td>
</tr>
<tr>
<td>Medications</td>
<td>Increase</td>
<td>No</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>Increase</td>
<td>Tubular secretion</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Increase</td>
<td>Tubular secretion</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Increase</td>
<td>Extrarenal elimination</td>
</tr>
</tbody>
</table>

Interpretation of Symptoms of Kidney Failure

Timing of access placement, preemptive transplantation, and initiation of dialysis are generally determined based on an eGFR and patient symptoms. However, symptoms of uremia are nonspecific. In patients with discrepancy between severity of reduction in eGFR and symptoms, it may be helpful to measure GFR.

Kidney Donation

The MDRD Study equation systematically underestimates mGFR at higher levels. Improved equations are likely to diminish the average underestimation, but errors will not be eliminated entirely. If the eGFR is low in an otherwise healthy potential kidney donor, mGFR should be considered.

Monitoring Kidney Transplant Recipients

Interpretation of changes in eGFR after kidney transplantation can be challenging. Rejection and nephrotoxicity are constant threats that require early detection and treatment. At the same time, there are multiple factors that affect non-GFR determinants of serum creatinine, such as liberalization of diet, use of trimethoprim, and muscle wasting effects of corticosteroids. mGFR may be necessary in complex cases in which it is suspected that both GFR and GFR determinants of serum creatinine are changing.

INTERPRETATION

Normal values for mGFR in whites are ~130 ml/min per 1.73 m² for young men and 120 ml/min per 1.73 m² for young women. Normal values show considerable variation among individuals, with measured values typically adjusted for body size. Day to day variability in mGFR is affected by protein intake, exercise, and diurnal variation.

The gold standard for the measurement of GFR is urinary clearance of an ideal filtration marker, defined as a substance that is freely filtered at the glomer-
oral water loading to stimulate diuresis, bladder catheterization to assure complete urine collection, and careful timing of blood sampling at the midpoint of the urine collection. However, inulin is difficult to handle, and the procedures are invasive. Because of these disadvantages, we use alternative clearance methods and filtration markers. Table 4 summarizes the strengths and limitations of the gold standard method, as well as other the clearance methods and markers.

All other filtration markers deviate from ideal behavior, and clearance measurements are difficult to perform; thus, values for mGFR usually contain an element of error, which differentiates it from true physiologic GFR. Bias generally reflects systematic differences in renal handling, extrarenal metabolism, or assay of the filtration marker. This bias is assessed experimentally by comparison to an ideal filtration marker relevant for assessing level of GFR in ranges important for clinical decision making. Imprecision generally reflects random error in performance of the clearance procedure or assay of the filtration marker. Measurements performed under standard conditions will minimize biologic variation and will reduce the likelihood of random errors. Precision is assessed by repeated measurement over a short time. Imprecision in mGFR is relevant for assessment of change in GFR over time. In an individual patient, bias and imprecision both affect the measured level and must be considered in the interpretation of mGFR. To evaluate the extent of the available literature and to provide data for this discussion, we performed a systematic review of all studies that compared simultaneous measurements of iothalamate, iothalamate, and inulin or repeated measurements of these markers using the same protocol (Table 5). The gray shaded boxes in Table 5 show the studies that report repeated measurements using the same protocol. Other markers and their comparison to inulin are also discussed below.

CLEARANCE METHODS

Urinary Clearance

Urinary clearance is the most direct method for measurement of GFR. Clearance is computed as the urine concentration of the exogenous or endogenous filtration marker, multiplied by the volume of the timed urine sample, and divided by the average plasma concentration during the same time period.

Measurement of the clearance of an endogenous filtration marker, such as creatinine, is performed in virtually every clinical center. A long urinary collection period—6 to 24 h—is used to avoid the requirement for water loading, and in the steady state, a single blood sample obtained either at the beginning or end of the collection period may be assumed to represent the average serum concentration during the urine collection. Timed collections are subject to errors caused by inaccurate record of time and

Figure 2. Effect of an acute GFR decline on generation, filtration, excretion, balance, and serum level of endogenous filtration markers. After an acute GFR decline, generation of the marker is unchanged, but filtration and excretion are reduced, resulting in retention of the marker (a rising positive balance) and a rising plasma level (non–steady state). During this time, eGFR is lower than GFR. Although GFR remains reduced, the rise in plasma level leads to an increase in filtered load (the product of GFR times the plasma level) until filtration equals generation. At that time, cumulative balance and the plasma level plateau at a new steady state. In the new steady state, eGFR approximates mGFR.

Table 3. Indications for measured GFR

<table>
<thead>
<tr>
<th>Extremes of age and body size</th>
<th>Severe malnutrition or obesity</th>
<th>Disease of skeletal muscle</th>
<th>Paraplegia or quadriplegia</th>
<th>Evaluation for kidney donation</th>
<th>Vegetarian diet</th>
<th>Before administration of prolonged courses of toxic medications</th>
</tr>
</thead>
</table>

...
<table>
<thead>
<tr>
<th>Approach</th>
<th>Strengths</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder catheter and continuous intravenous infusion of marker</td>
<td>Gold standard method</td>
<td>Invasive</td>
</tr>
<tr>
<td>Spontaneous bladder emptying</td>
<td>Patient comfort</td>
<td>Possibility of incomplete bladder emptying</td>
</tr>
<tr>
<td>Bolus administration of marker</td>
<td>Less invasive</td>
<td>Low flow rates in people with low levels of GFR</td>
</tr>
<tr>
<td></td>
<td>Shorter duration</td>
<td>Rapidly declining plasma levels at high levels of GFR</td>
</tr>
<tr>
<td>24-h urinary collection</td>
<td>Can be performed at home</td>
<td>Longer equilibration time in extracellular volume expansion</td>
</tr>
<tr>
<td>Plasma clearance</td>
<td>No urine collection needed</td>
<td>Prone to error</td>
</tr>
<tr>
<td></td>
<td>Potential for increased precision</td>
<td>Overestimation of GFR in extracellular volume expansion</td>
</tr>
<tr>
<td>Nuclear imaging</td>
<td>No urine collection or repeated blood samples needed</td>
<td>Inaccurate values with one-sample technique, particularly at lower GFR levels</td>
</tr>
<tr>
<td></td>
<td>Relatively short duration</td>
<td>Longer duration of plasma sampling required for low GFR</td>
</tr>
<tr>
<td>Markers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inulin</td>
<td>Gold standard</td>
<td>Expensive</td>
</tr>
<tr>
<td></td>
<td>No side effects</td>
<td>Difficult to dissolve and maintain into solution</td>
</tr>
<tr>
<td></td>
<td>Assay available in all clinical laboratories</td>
<td>Short supply</td>
</tr>
<tr>
<td>Creatinine</td>
<td>Endogenous marker, no need for administration</td>
<td>Secretion which can vary among and within individuals</td>
</tr>
<tr>
<td>Iothalamate</td>
<td>Inexpensive</td>
<td>Probable tubular secretion</td>
</tr>
<tr>
<td></td>
<td>Long half-life</td>
<td>Requirement for storage, administration, and disposal of radioactive substances when¹²⁵I used as tracer</td>
</tr>
<tr>
<td></td>
<td>Assay available in all clinical laboratories</td>
<td>Use of non-radioactive iothalamate requires expensive assay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cannot be used in patients with allergies to iodine</td>
</tr>
<tr>
<td>Iohexol</td>
<td>Not radioactive</td>
<td>Possible tubular reabsorption or protein binding</td>
</tr>
<tr>
<td></td>
<td>Inexpensive</td>
<td>Use of low doses requires expensive assay</td>
</tr>
<tr>
<td></td>
<td>Sensitive assay allows for low dose</td>
<td>Cannot be used in patients with allergies to iodine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nephrotoxicity and risk for allergic reactions at high doses</td>
</tr>
<tr>
<td>EDTA</td>
<td>Widely available in Europe</td>
<td>Probable tubular reabsorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requirement for storage, administration, and disposal of radioactive substances when ⁵¹Cr is used as tracer</td>
</tr>
<tr>
<td>DTPA</td>
<td>Widely available in the United States</td>
<td>Requires standardization for ⁹⁹ᵐTc</td>
</tr>
<tr>
<td></td>
<td>New sensitive and easy to use assay for gadolinium</td>
<td>Dissociation and protein binding of ⁹⁹ᵐTc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concern for NSF when gadolinium is used as the tracer</td>
</tr>
</tbody>
</table>
complete urine collection. Indeed, in the MDRD Study, measured creatinine clearance was not more accurate than eGFR using the MDRD Study equation. Averaging over repeated measurements may minimize the impact of error but adds to patient burden. One of the limitations of cystatin C is that it is catabolized and reabsorbed by the tubules. As such, its urinary clearance cannot be measured.

For an exogenous filtration marker, multiple (2 to 4) 20- to 30-min urine collections are obtained after administration of the marker, clearance is computed for each urine collection period, and the results are averaged. Advantages include a relatively short duration of time, and comparison of the individual periods allows for an assessment of quality of test results. The marker is administered by intravenous bolus or bolus subcutaneous injection. Subcutaneous injection allows for a slower release of the marker into the circulation and more constant plasma levels.

In patients with high GFR, the marker is rapidly excreted. Administration of water before and during the protocol is necessary to stimulate urine flow to allow completion of urine collections while the marker concentration remains above the detection limit of the assay. Spontaneous voiding is used almost exclusively, which limits its use in populations with impaired urinary incontinence or retention, such as the elderly or children with urinary tract abnormalities and which increases risk for error caused by incomplete urine collections.

The classic study by Davies and Shock reported an SD of the range of 4.9 to 9 ml/min per 1.73 m² in normal individuals (mean GFR, ~90 ml/min per 1.73 m²) for urinary clearance of inulin measured twice over 2 d. Another study of urinary clearance of inulin reported a coefficient of variation of 11.3%. In the MDRD Study, the median coefficient of variation for repeated measurement of urinary clearance of iothalamate using bolus subcutaneous injection was 6.3% over 3 mo, whereas it was 18.7% in another study where iothalamate was administered using continuous subcutaneous infusion.

Plasma Clearance

There is increasing interest in measuring plasma clearance to avoid inconvenience and errors from timed urine collections, and this methodology is of increasing importance given the aging population. In principle, plasma clearance should be unbiased and more precise compared with urinary clearance except for markers that undergo extrarenal elimination. GFR is calculated from plasma clearance after a bolus intravenous injection of an exogenous filtration marker, with clearance computed from the amount of the marker administered divided by the area under the curve of plasma concentration over time. The decline in serum levels is secondary to the immediate disappearance of the marker from the plasma into its volume of distribution (fast component) and to renal excretion (slow component). This is best estimated using a two-compartment model that requires blood sampling early (usually two to three time points until 60 min) and late (one to three time points from 120 min forward).

The major disadvantage of plasma clearance is the length of time (~5 h) needed to determine the disappearance curve, with an even longer time needed in people with very low GFR (8 to 10 h). Shorter time periods may lead to overestimation of GFR throughout the GFR range. Second, it may be difficult to obtain repeated blood samples in people with poor vascular access. To minimize the need for repeated blood samples, an equation has been developed to approximate the fast component, allowing the decline to be estimated using only late samples. Third, a large volume of distribution, such as edematous conditions,
prolongs the initial component, leading to an overestimation of GFR. 38

Studies comparing urinary and plasma clearance of either iohalate or iohexol show high agreement, although some studies showed that plasma clearance slightly overestimates urinary clearance at lower levels of GFR (Table 5). 17,34

In studies of repeated measurements of plasma clearance of iohalate or iohexol, the coefficient of variation ranged from 5.6 to 11.5%, 37,39,42,43 similar to the variation observed with urinary clearance reported above. More studies are necessary to determine the precision of these methods.

External Counting and Imaging

GFR can also be measured by counting of a radioactive exogenous filtration marker over the kidneys and bladder. This technique can be combined with renal imaging, usually using 99mTc-DTPA, and is useful for determination of split kidney function. 49,50

Several studies indicate poor correlation of 99mTc-DTPA dynamic renal imaging with simultaneous urinary or plasma clearance, reflecting both bias and imprecision and lesser accuracy than eGFR. 51–53 Currently, magnetic resonance imaging is being investigated for measurement of GFR. Many protocols are in use that will need consolidation before introduction into clinical practice. 54,55

EXOGENOUS FILTRATION MARKERS

Iothalate

Iothalate is commonly administered as a radioactive iodine label for ease of assay after small doses but can also be administered in its nonradioactive form and measured using HPLC without impact on its filtration properties. In the radioactive form, it is most commonly administered using bolus subcutaneous injection. 125I-Iothalate has been widely adopted for measurement of GFR. To block thyroidal uptake, cold iodine is administered at the time of 125I-iohalate administration, thus precluding its use in people with known allergies to iodine, such as shellfish or iodinated contrast media. Most 20,21,26,27,29,30 but not all 22–25 studies comparing urinary clearance of iothalate to iohexol showed a small positive bias, probably because of tubular secretion of iothalate (Table 5).

Iohexol

Concern about radiation led to the use of the nonradioactive radiographic contrast agent iohexol. 40 Iohexol is administered most often using bolus intravenous injection for plasma clearance but could be used for urinary clearance as well. Other advantages include low expense, wide availability, stability in biologic fluids, and rare adverse reactions when given as a small dose (5 ml of 300 mg/ml iodine) when assayed with a sensitive HPLC assay. 17,43,56,57 Major limitations are the complexity and expense of the HPLC assay. Iohexol can also be assayed using x-ray fluorescence but is less sensitive than HPLC, necessitating administration of significantly larger doses of iohexol (10 to 90 ml of 300 mg/ml iodine). 16,17,35 Four small studies have compared plasma clearance of iohexol to urinary clearance of inulin (Table 5). Two of the studies showed a small under-estimate of inulin clearance, suggesting tubular reabsorption or protein binding. 16–19 Two studies compared plasma clearance of iohexol using a one-compartment model with blood sampling to 240 min to urinary clearance of iothalate. Both studies suggested a high correlation between the two methods (90 to 95%), 35,36

Other Filtration Markers

The 51Cr-EDTA marker is not commercially available in the United States, but there is an extensive European experience. 48,58–60 The urinary clearance of 51Cr-EDTA consistently underestimates inulin clearance by 5 to 15% in most, although not all, studies, suggesting tubular reabsorption. 48

Diethylenetriaminopenta-acetic acid (DTPA), an analog of EDTA, usually labeled with 99mTc, is available in the United States. Advantages include a short half-life (6 h) that minimizes radiation exposure, high counting efficiency of 99mTc, and common used in most nuclear medicine departments. 49,61 DTPA is thought to be freely filtered at the glomerulus, with minimal tubular reabsorption, but may undergo extrarenal elimination. Its major limitation is the potential for dissociation of 99mTc from DTPA and binding to plasma proteins, leading to underestimation in GFR. The extent of dissociation is not predictable, leading to imprecision and bias. In addition, chelating kits and technetium generators are not standardized in the United States, making comparisons of mGFR among different institutions difficult.

The magnetic resonance imaging contrast agents, gadolinium-DTPA or gadolinium-DOTA, have recently been discussed as novel exogenous filtration markers because, in part, of the wide availability of these agents and their low rate of allergic reactions. 62,63 In addition, a highly sensitive, novel, immunoassay technique is easily performed in most clinical laboratories and needs very low doses (1/40th of dose used for contrast). 64 The recent attention to systemic nephrogenic fibrosis diminishes enthusiasm for this agent in people with lower levels of GFR, but because of the very low dose needed, this reaction is highly unlikely. 65

CLINICAL RECOMMENDATIONS

There are a variety of differences among markers and clearance methods for GFR measurement compared with the classic method of inulin clearance. However, the bias seems relatively small, and imprecision can be reduced by adherence to standardized protocols, providing accuracy substantially greater than eGFR. Based on the advantages and disadvantages described above, we suggest that plasma clearance of nonradioactive exogenous markers is the most simple to implement by clinical laboratories not already performing GFR measurements.

CONCLUSIONS

GFR estimation is essential to the assessment of kidney disease. GFR estimating
equations provide more accurate estimates from serum markers than serum markers alone and can be used in most clinical encounters, but have serious limitations in some clinical circumstances. mGFR is a reasonable confirmatory test to enhance clinical decision making in these circumstances. Protocols for GFR measurement have been widely tested and are accurate and safe. We suggest that GFR measurement should be more widely used in clinical practice. Nephrologists, in collaboration with clinical laboratories or nuclear medicine departments, should provide leadership in the implementation of GFR measurement protocols in their local institutions. Further research is necessary to assess the impact of mGFR as a confirmatory test in routine clinical practice.

DISCLOSURES
None.

ACKNOWLEDGMENTS
This work was supported by NIH Grants U01 DK 053869, U01 DK 067651, and K23 DK081017. The authors acknowledge Tom Greene, PhD, and Josef Coresh, MD, PhD, for their contribution to our thinking about error in measured GFR, Robert D. Bruce III for his assistance in conducting the literature search for comparison of the markers, and Maia Leppo for her editorial assistance.

REFERENCES
29. Notghi A, Merrick MV, Ferrington C, Ander-
ton JL: A comparison of simplified and stan-
ard methods for the measurement of glo-
merular filtration rate and renal tubular
30. Tessitore N, Lo Schiavo C, Corgnati A, Pre-
vianto G, Valvo E, Lupo A, Chiaromonte S,
Messina P, D’Angelo A, Zotti M, Maschio G:
125I-iothalamate and creatinine clearances in
patients with chronic renal diseases. Nephron
24: 41–45, 1979
31. Davies DF, Shock NW: The variability of mea-
surements of insulin and diodast tests of kid-
32. Florijn KW, Barendregt JN, Lentjes EG, van
Dam W, Prodjusudjadi W, van Saase JL, van
Es LA, Chang PC: Glomerular filtration rate
measurement by “single-shot” injection of
33. Levey AS, Greene T, Schluchter MD, Cleary
PA, Teschan PE, Lorenz RA, Molitch ME,
Mitch WE, Siebert C, Hall PM: Glomerular
filtration rate measurements in clinical trials.
Modification of Diet in Renal Disease Study
Group and the Diabetes Control and Com-
plications Trial Research Group. J Am Soc
Nephrol 4: 1159–1171, 1993
34. Zietse R, Blankstijn PJ, Pos B, Balk AH,
Dercks FH, Weimar W, Schalekamp MA: Op-
timizing glomerular filtration rate and effec-
tral renal plasma flow measurements using a
simple pharmacokinetic model. Clin Neph-
rol 43: 29–34, 1995
35. Rocco MV, Buckalew VM Jr, Moore LC, Shi-
habi ZK: Capillary electrophoresis for the de-
termination of glomerular filtration rate us-
ing nonradioactive iohexol. Am J Kidney Dis
36. Rocco MV, Buckalew VM Jr, Moore LC, Shi-
habi ZK: Measurement of glomerular fil-
tration rate using nonradioactive iohexol:
Comparison of two one-compartment mod-
37. Agarwal R: Ambulatory GFR measurement
with cold iohexolate in adults with chronic
759, 2003
S, Pergola P: Prediction of GFR in liver trans-
plant candidates. Am J Kidney Dis 42:
1169–1176, 2003
39. Chowdhury TA, Dyer PH, Bartlett WA,
Legge ES, Durbin SM, Barnett AH, Bain SC:
Glomerular filtration rate determination in
diabetic patients using iohexol clearance: Com-
tparison of single and multiple plasma
sampling methods. Clin Chim Acta 277:
152–158, 1998
40. Schwartz GJ, Furth S, Cole SR, Warady B,
Munoz A: Glomerular filtration rate via
plasma iohexol disappearance: pilot study for
chronic kidney disease in children. Kid-
ney Int 69: 2070–2077, 2006
41. Pucci L, Bandinelli S, Pilo M, Nannipieri M,
Navalesi R, Pennu G: Iohexol as a marker of
glomerular filtration rate in patients with di-
abetes: Comparison of multiple and simpli-
fied sampling protocols. Diabetic Med 18:
116–120, 2001
42. Tan GD, Lewis AV, James TJ, Altmann P,
Taylor RP, Levy JC: Clinical usefulness of
cystatin C for the estimation of glomerular
filtration rate in type 1 diabetes: Reproduc-
ibility and accuracy compared with standard
measures and iohexol clearance. Diabetes Care
43. Gaspari F, Perico N, Matalone M, Signorini
O, Azzollini N, Mister M, Remuzzi G: Preci-
sion of plasma clearance of iohexol for esti-
mation of GFR in patients with renal disease.
44. Tenstad O, Roald O, Grubb A, Aukland K:
Renal handling of radio labelled human cyst-
in C in the rat. Scand J Clin Lab Invest 56:
409–414, 1996
45. Jacobsson B, Lignelid H, Bergerheim US: Tran-
sphyretin and cystatin C are catabolized in prox-
imural tubal epithelial cells and the proteins are
not useful as markers for renal cell carcinomas.
Histo pathological 26: 559–564, 1995
AS: Laboratory Evaluation of Renal Function,
Baltimore, MD, Lippincott Williams and Wilkins,
2006
47. Agarwal R, Bills JE, Yigazu PM, Abraham T,
Gizaw AB, Light RP, Bekele DM, Tegegne GG:
Assessment of iohexol iohexol plasma clearance:
Duration of study affects quality of GFR. Clin J
and their reliability for assessment of glo-
merular filtration rate in adults, with spe-
cial reference to total [51Cr]EDTA plasma
49. Chervu LR, Blaufuss MD: Renal radioapha-
cuticals: An update. Semin Nuclear Med
12: 224, 1982
50. Gates GF: Split renal function testing using
99mTc diethylene-triamine pentaacetic
cid acid glomerular filtration rate (GFR) determi-
nation in Chinese patients in different
munoassay Technology (FIT), a new approach for measuring glomerular filtration rate in
51. Grewal GS, Blake GM: Reference data for
51Cr-EDTA measurements of the glomerular filtration rate derived from live kidney donors.
Nucl Med Commun 26: 61–65, 2005
52. Lee TY, Constable AR, Cranage, RW: A
method for GFR determination without
blood samples in routine renal scintigraphy
with Tc99mDTPA. In: Radionuclides in Ne-
rology. Proceedings of the Fifth Interna-
tional Symposium, edited by Joekes AM,
Constable AR, Brown NJG, Tauxe WN, Lon-
don, Academic Press, p 107, 1982
53. Schuhmann-Giampieri G, Krestin G: Phar-
macokinetics of Gd-DTPA in patients with
chronic renal failure. Invest Radiol 26: 975–
979, 1991
54. Reinhardt CP, Germain MJ, Groman EV,
Mulhem JG, Kumar R, Vaccaro DE: Func-
tional immunoassay technology (FIT), a
new approach for measuring physiological
functions: application of FIT to measure
glomerular filtration rate (GFR). Am J Physiol
55. BioPal, Inc.: Laboratory Manual: Functional Im-
muonoassay Technology (FIT)16, Glomerular Fil-
tration Rate (GFR, FIT-GFRM Kit (Gd-DTPA). Wocster, MA, BioPal, Inc., 2007, p 10
56. Swaminathan S, Shah SV: New insights into
nephrogenic systemic fibrosis. J Am Soc
Nephrol 18: 2636–2643, 2007

www.jasn.org BRIEF REVIEW

Measured GFR as a Confirmatory Test

2313